МАТЕМАТИКА В ШКОЛЕ
КОНТРОЛЬНЫЕ, САМОСТОЯТЕЛЬНЫЕ, ЗАДАЧИ, УРОКИ ...
Номер свидетельства СМИ ЭЛ № ФС 77 - 63677
зарегистрировано Роскомнадзором

Алгебра – 9 класс. Множества и подмножества

Урок и презентация на тему: "Множества и подмножества, примеры"




Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.



Скачать: Множества и подмножества (PPTX)

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 9 класса
Мультимедийное учебное пособие для 9 класса "Алгебра за 10 минут"
Электронное учебное пособие для учащихся 7-9 классов "Понятная алгебра"



Множества и подмножества


Ребята, мы переходим к изучению очень важной темы "Множества". Множества нам будут встречаться постоянно, в курсах математики за более старшие классы и в 9 классе почти все темы тесно связанны с данным понятием. Поэтому постарайтесь хорошо усвоить данную тему.

Так что же такое множество?
Множествами занимается специальный раздел математики теория множеств. Множество – одно из главных и фундаментальных понятий. Определения у него нет, но давайте попробуем понять, что же такое множество? Множество – это совокупность различных элементов, их можно посчитать, сгруппировать. Примерами множеств могут служить буквы алфавита – множество, состоящее из 33 элементов. Множество яблок на дереве – количество яблок на дереве, конечно и его можно посчитать и занумеровать. Примеров множеств можно придумать очень много. Попробуйте сами придумать какой-нибудь пример.
В математике множество обозначается в фигурных скобках {,}. Например, множество первых пяти букв английского алфавита обозначат вот так: {A,B,C,D,E}. Если записать это множество в другом порядке, оно не изменится.
Математика настолько интересный предмет, что у нас есть понятие пустого множества и бесконечного множества. Пустое множество – множество, в котором нет ни одного элемента, его обозначают без скобок и используют значок Ø. Бесконечное множество, наверняка понятно из названия – множество, в котором бесконечное количество элементов, например множество всех чисел.
Множества можно описать различными словами, например, {10, 12, 16, 18, ..., 96 ,98} – это множество четных двузначных чисел. Многоточие используется, когда элементов очень много и все их записать сложно, но при этом запись множества должна быть понятной, и чтобы по ней можно было определить, что это за множество.
$ \{x| -2<x<7\}$ – множество всех чисел х, таких, что х больше минус двух и меньше 7.
$ \{3;10\} $ – множество всех чисел, больших трех, но меньших 10.

Существуют специальные обозначения множеств. Например, для множества натуральных чисел. Ребята, а вы помните, как это множество обозначается?
Для обозначения принадлежности элемента множеству используется специальный знак - $ϵ$. Запись $2 ϵ \{2,4,6,8... \}$. Читается так: "Два принадлежит множеству четных чисел".

Пример.
Некоторое множество состоит из корней уравнения $x^3+3x^2+2x=0$. Найдите элементы этого множества и перечислите все возможные варианты расположения элементов.

Решение.
Давайте решим уравнение, вынесем х за скобки:
$x(x^2+3x+2)=0$
$x(x+2)(x+1)=0$

Тогда решения нашего уравнения: $x=0;-2;-1$ – это и есть элементы искомого множества.
Давайте запишем возможные варианты расположения элементов:
{-2;-1;0},{-2;0;-1},{-1;0;2},{-1;2;0},{0;-2;-1},{0;-1;-2}.

Пример.
Опишите данные множества.

$а) \{1,2,3,4,...,9,10 \} \\ б) \{1,8,27,64 ... \}$.
Решение.
а) Множество натуральных чисел от 1 до 10.
б) Множество всех значений кубов натуральных чисел.

Пример.
Решив неравенство, записать его решения в виде числового промежутка:

а) $ \{x^2 | x^2+1>0 \} \; б) \{x| 1/x<0\} \; в) \{x|x^2+7x+12<0\}$

Решение.
а) $x^2+1>0$ больше нуля при всех х. Тогда числовой промежуток запишется в виде: $(-∞;+∞)$ б) $1/x<0 при х<0$, тогда промежуток будет выглядеть так: $ (-∞;0)$ в) $x^2+7x+12<0 $Решим неравенство методом интервалов. Ребята вспомните как мы решали неравенства на прошлом уроке и решите самостоятельно. А ответом нашей задачи будет интервал $(-4;-3)$.


Подмножество


Если из нашего множества выбрать несколько элементов и сгруппировать их отдельно – то это будет подмножество нашего множества. Комбинаций, из которых можно получить подмножество много, количество комбинаций лишь зависит от количества элементов в исходном множестве.
Пусть у нас есть два множества А и Б. Если каждый элемент множества Б является элементом множества А, то множество Б называется подмножеством А. Обозначается: Б ⊂ А. Пример.
Сколько существует подмножеств множества $А={1;2;3}$.
Решение.
Подмножества состоя из элементов нашего множества. Тогда у нас существует 4 варианта по количеству элементов в подмножестве:
Подмножество может состоять из 1 элемента, из 2, 3 элементов и может быть пустым. Давайте последовательно запишем наши элементы.
Подмножество из 1 элемента: ${1}, {2}, {3}$
Подмножество из 2 элементов:$ {1,2},{1,3},{2,3}.$
Подмножество из 3 элементов:$ {1;2;3}$

Не забудем, что пустое множество так же является подмножеством нашего множества. Тогда получаем, что у нас есть 3+3+1+1=8 подмножеств.


Задачи для самостоятельного решения


1. Найдите множество решений уравнения: $2x^3+8x^2+6x=0$. Перечислите все возможные варианты расположения элементов.
2. Опишите множество:
$a) \{1;3;5;7...99 \} \\b) \{1,4,7,10,13,16 \} \\ c) \{5;10;15;20 ... 995 \}$
3. Сколько существует подмножеств множества А={3;4;5;6}.



Add comment

Security code
Refresh

задачи

тесты и уроки