Алгебра – 10 класс. Арккосинус, arccos (x)

Урок и презентация на темы: "Арккосинус. Таблица арккосинусов. arccos(0), arccos(1), arccos(2)"



Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.



Скачать: Тригонометрические уравнения. Арккосинус (PPTX)





Что будем изучать:
1. Что такое арккосинус?
2. Обозначение арккосинуса.
3. Немного истории.
4. Определение.
5. Таблица значений арккосинуса.
6. Примеры.

Что такое арккосинус?


Ребята, мы с вами уже изучили функцию Y=cos(X), построили ее график и решали некоторые уравнения, например cos(x)= 1/2. Для решения этого уравнения требовалось провести прямую x= 1/2 и посмотреть, в каких точках она пересекает числовую окружность.

Видно что прямая пересекает окружность в двух точках F и G. Эти точки и являются решением уравнения. Переобозначим F как x1, а G - как x2. Решение уравнения мы нашли довольно легко и определили, что x1 = π/3 + 2πk, а x2 = -π/3 + 2πk.

Решить данное уравнение довольно просто, но как решить, например, уравнение cos(x)=4/7. Очевидно, что решением уравнения будут две точки, но какие значения будут соответствовать решению на числовой окружности?


Функция арккосинус

Обозначение арккосинуса


Давайте внимательно посмотрим на уравнение cos(x)=4/7.

Как мы и говорили, решениями нашего уравнения будут две точки: F=x1+2πk и G=x2+2πk, но, что это за точки? Много лет назад столкнувшись с этой проблемой математики решили, что надо придумать некоторый способ описания решения на математическом языке. И был придуман новый символ – arccos(x). Будем читать как арккосинус.

Тогда решения нашего уравнения запишутся как: x1=arccos(4/7) и x2=-arccos(4/7). И решение в общем виде: x=arccos(4/7) + 2πk и x=-arccos(4/7) + 2πk. Арккосинус - это угол (длина дуги AF, AG), косинус которого равен 4/7.


Функция y=arсcos(x)

Немного истории


Жозеф Луи Лагранж

Символ arccos появляется впервые в 18 веке в работах математика Шерфера и известного французского ученого Жозефа Луи Лагранжа, портрет которого вы видите на этой странице. Несколько ранее понятие арккосинус уже рассматривал Д. Бернули, но записывал его совсем другими символами.

Общепринятыми эти символы стали лишь в конце XVIII столетия. Приставка "arc" происходит от латинского "arcus" (лук, дуга), что вполне согласуется со смыслом понятия:
arccos x - это угол (можно сказать и дуга), косинус которого равен x.




Определение арккосинуса.


Если |а|≤ 1, то arccos(a) – это такое число из отрезка [0; π], косинус которого равен а.


Функция y=cos(x)

Если |а|≤ 1, то уравнение cos(x)=a имеет решение: x=±arccos(a) + 2πk


Функция y=arсcos(x)

Есть три случая, в которых предпочитают записывать решения более простым способом:

cos(x)=0, то x= π/2 + πk

cos(x)=1, то x= 2πk

cos(x)=-1, то x= π + 2πk

Также стоит записать важное равенство:

Для любого -1 ≤ а ≤ 1 выполняется равенство: arccos(a) + arccos(-a) = π; при решение заданий удобнее использовать: arccos(-a) = π - arccos(a), где -1 ≤ а ≤ 1

Таблица значений косинуса


Значений косинуса

Таблица значений арккосинуса


Напишем таблицу значений косинуса наоборот и получим таблицу для арккосинуса

Значение арккосинуса

Примеры


1. Найти значение функции arccos(-√3/2).
Решение: Пусть arccos(-√3/2)=x, тогда cos(x)=-√3/2 и по определению 0 ≤ x ≤ π. Посмотрим значения косинуса в таблице: x=5π/6, т.к. cos(5π/6)= -√3/2 и 0 ≤ 5π/6 ≤ π.
Ответ: arccos(-√3/2)=5π/6

2. Найти значение функции arccos(√2/2).
Решение: Пусть arccos(√2/2) = x, тогда cos(x)= √2/2 и по определению 0 ≤ x ≤ π. Посмотрим значения косинуса в таблице: x=π/4, т.к. cos(π/4)= √2/2 и 0 ≤ π/4 ≤ π.
Ответ: arccos(√2/2)=π/4

3. Найти значение функции arccos(1).
Решение: Пусть arccos(1) = x, тогда cos(x)= 1 и по определению 0≤ x ≤ π. Посмотрим значения косинуса в таблице: значит x=0, т.к. cos(0)= 1 и 0 ≤ 0 ≤ π.
Ответ: arccos(1)=0

4. Решить неравенство cos(x)> -0.3.
Решение: Косинус - это абсцисса точки числовой окружности. Значит необходимо найти такие точки, абсциссы которых больше -0.3. Нарисуем прямую x=-0.3. Она пересекает числовую окружность в двух точках: F и G. Неравенству x>-0.3 соответствуют точки дуги GF. Точкам F и G соответствуют абсциссы: ±arccos(-0.3)= ±(π - arccos(0.3)). Запишем аналитическую запись дуги GF: -π + arccos(0.3)< x < π - arccos(0.3).
Ответ: -π + arccos(0.3) < x < π - arccos(0.3)

Функция y=arсcos(x)

Задачи для самостоятельного решения


1)Вычислить:
а) $arccos(\frac{\sqrt{3}}{2})$,
б) $arccos(-\frac{1}{2})$,
в) $arccos(0)$,
г) $arccos(-0,5)$.
2) Решить уравнения:
а) $cos(x)=-\frac{1}{2}$,
б) $cos(x)=1$,
в) $cos(x)=\frac{\sqrt{3}}{2}$,
г) $cos(x)=0,25$,
д) $cos(x)=-1,2$.
3) Решить неравенства:
а) $cos(x)>0,6$,
б) $cos(x)≤0,2$.