Алгебра – 11 класс. Корень n-ой степени

Урок и презентация на тему: "Корень n-ой степени из действительного числа"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.



Скачать: Корень n-ой степени из действительного числа (PPTX)





Корень n степени. Повторение пройденного.


Ребята, тема сегодняшнего занятия называется "Корень n-ой степени из действительного числа".
Корень квадратный из действительного числа мы с вами изучали в 8 классе. Корень квадратный связан с функцией вида $y=x^2$. Ребята, вы помните, как мы вычисляли корни квадратные, и какие у него были свойства? Повторите самостоятельно эту тему.
Давайте рассмотрим функцию вида $y=x^4$ и построим ее график.
Функция вида $y=x^4$
Теперь графически решим уравнение: $x^4=16$.
На нашем графике функции проведем прямую $y=16$ и посмотрим, в каких точках два наших графика пересекаются. Прямая $y=16$
По графику функции хорошо видно, что у нас два решения. Функции пересекаются в двух точках с координатами (-2;16) и (2;16). Абсциссы наших точек и есть решения нашего уравнения: $x_1=-2$ и $x_2=2$. Также легко найти корни уравнения $x^4=1$, очевидно, что $x_1=-1$ и $x_2=1$.
Как быть в случае, если есть уравнение $x^4=7$.
Давайте построим график наших функций: Уравнение $x^4=7$
По нашему графику хорошо видно, что уравнение имеет также два корня. Они симметричны относительно оси ординат, то есть они противоположны. Найти точное решение по графику функций не представляется возможным. Мы можем только сказать, что наши решения по модулю меньше 2, но больше 1. Также можно сказать, что наши корни являются иррациональными числами.
Столкнувшись с такой проблемой, математикам нужно было ее описать. Они ввели новое обозначение: $\sqrt[4]{}$, который назвали корнем четвертой степени. Тогда корни нашего уравнения $x^4=7$ запишутся вот в таком виде: $x_1=-\sqrt[4]{7}$ и $x_2=\sqrt[4]{7}$. Читается, как корень четвертой степени из семи.
Мы говорили об уравнении вида $x^4=a$, где $а>0$ $(а=1,7,16)$. Мы можем рассматривать уравнения вида: $x^n=a$, где $а>0$, n - любое натуральное число.
Нам, следует обратить внимание на степень при х, от четности или нечетности степени - меняется количество решений. Давайте рассмотрим конкретный пример. Решим уравнение $x^5=8$. Построим графики функции: Корень n степени
По графику функций хорошо видно, что в нашем случае имеем всего одно решение. Решение принято обозначать как $\sqrt[5]{8}$. Решая уравнение вида $x^5=a$ и пробежав по всей оси ординат, нетрудно понять, что это уравнение всегда будет иметь одно решение. При этом значение а может быть и меньше нуля.


Корень n степени. Определение


Определение. Корнем n-ой степени ($n=2,3,4…$) из неотрицательного числа а, называют такое неотрицательное число, при возведении которого в степень n получается число а.

Это число обозначают, как $\sqrt[n]{a}$. Число а называется подкоренным число, n – показатель корня.

Корни второй и третьей степени принято называть корнями квадратными и кубическими соответственно. Мы их изучали в восьмом и девятом классе.
Если $а≥0$, $n=2,3,4,5…$, то:
1) $\sqrt[n]{a}≥0,$
2) $(\sqrt[n]{a})^n=a.$
Операцию нахождения корня из неотрицательного числа называют "извлечением корня".
Возведение в степень и извлечения корня - это одна и та же зависимость: Возведение в степень
Ребята, обратите внимание, что в таблице представлены только положительные числа. В определении мы оговорили, что корень извлекается только из неотрицательного числа а. Дальше мы внесем уточнения, когда можно извлекать корень и из отрицательного числа а.

Корень n степени. Примеры решения


Вычислить:
а) $\sqrt{64}$.
Решение: $\sqrt{64}=8$, так как $8>0$ и $8^2=64$.

б) $\sqrt[3]{0,064}$.
Решение: $\sqrt[3]{0,064}=0,4$, так как $0,4>0$ и $0,4^3=0,064$.

в) $\sqrt[8]{0}$.
Решение: $\sqrt[8]{0}=0$.

г) $\sqrt[5]{34}$.
Решение: В данном примере точное значение мы узнать не можем, наше число иррациональное. Но мы можем сказать, что оно больше 2 и меньше 3, так как 2 в 5 степени равно 32, а 3 в 5 степени равно 243. 34 лежит между этим числами. Приближенное значение мы можем найти с помощью калькулятора, который может вычислять корни $\sqrt[5]{34}≈2,02$ с точностью до тысячных.
В нашем определении мы договорились вычислять корни n-ой степени только из положительных чисел. В начале урока мы видели пример, что можно извлекать корни n-ой степени и из отрицательных чисел. Мы рассмотрели нечетный показатель функции и теперь давайте внесем уточнения.

Определение. Корнем нечетной степени n (n=3,5,7,9…) из отрицательного числа а называют такое отрицательное число, при возведение которого в степень n получается а.

Обозначение принято использовать такие же.
Если $а<0$, $n=3,5,7…$, то:
1) $\sqrt[n]{a}<0$.
2) $(\sqrt[n]{a})^n=a$.
Корень четной степени имеет смысл только для положительного подкоренного числа, корень нечетной степени имеет смысл для любого подкоренного числа.

Примеры.
а)Решить уравнения: $\sqrt[3]{3x+3}=-3$.
Решение: Если $\sqrt[3]{y}=-3$, то $y=-27$. То есть, обе части нашего уравнения надо возвести в куб.
$3х+3=-27$.
$3х=-30$.
$х=-10$.

б)Решить уравнения: $\sqrt[4]{2х-1}=1$.
Возведем обе части в четвертую степень:
$2х-1=1$.
$2х=2$.
$х=1$.

в) Решить уравнения: $\sqrt[4]{4x-1}=-5$.
Решение: Согласно нашему определению, корень четной степени можно извлекать только из положительного числа, а нам дано отрицательное, тогда корней нет.

г)Решить уравнения: $\sqrt[5]{x^2-7x+44}=2$.
Решение: Возведем обе части уравнения в пятую степень:
$x^2-7x+44=32$.
$x^2-7x+12=0$.
$x_1=4$ и $x_2=3$.


Задачи для самостоятельного решения


1. Вычислите:
а) $\sqrt{81}$.
б) $\sqrt[4]{0,0016}$.
в) $\sqrt[8]{1}$.
г) $\sqrt[6]{70}$.
2. Решите уравнения:
а) $\sqrt[4]{2x+6}=2$.
б) $\sqrt[4]{3x-5}=-1$.
в) $\sqrt[3]{4x-8}=-4$.
г) $\sqrt[6]{x^2-8x+49}=2$.