Алгебра – 11 класс. Обобщение понятий о показателях степени

Урок и презентация на тему: "Обобщение понятий о показателях степени"


Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.



Скачать: Обобщение понятий о показателе степени (PPTX)





Ребята, на этом уроке мы займемся обобщением знаний о показателях степеней. Мы умеем вычислять степени с любым целочисленным показателем. Как быть, если показатель степени - не целое число? И какая связь между корнями и степенными функциями не целого показателя?

Давайте немного повторим, рассмотрим число вида $a^n$.
1. Если $n=0$, то $a^n=a^0=1$.
2. Если $n=1$, то $a^n=a^1=a$.
3. Если $n=2,3,4,5$… то $a^n=a*a*a…*a$ (n множителей).
4. Если $n=1,2,3,4,5$… и $а≠0$, то $a^{-n}=\frac{1}{a^n}$.

Указанные выше правила можно также использовать как памятку!

Во всех представленных выше правилах, показатель степени - целое число. Как быть в случае дробного показателя степени?
Что представляет из себя число $2^{\frac{2}{3}}$ и как с ним работать? При работе с такими степенями нужно, чтобы все свойства для целочисленных степеней сохранялись. Например, при возведении степени в степень – показатели перемножались.

Например: ${(2^{\frac{2}{3}})}^3=2^{\frac{2}{3}*3}=2^2$.
Давайте введем вот такую замену символов: $a=2^{\frac{2}{3}}$.
Тогда: $a^3=2^2$.
Получаем: $a=\sqrt[3]{2^2}$.
То есть мы можем представить исходное выражение в таком виде: $2^{\frac{2}{3}}=\sqrt[3]{2^2}$.

Определение. Пусть нам дана обыкновенная дробь $\frac{a}{b}$, $b≠1$ и $х≥0$, тогда $x^{\frac{a}{b}}=\sqrt[b]{x^a}$.

Например: $3^{\frac{1}{3}}=\sqrt[3]{3}$,
$5^{\frac{2}{5}}=\sqrt[5]{5^2}$.

Благодаря такому определению, удалось сохранить все свойства степенных функции.

Давайте умножим два числа с одинаковыми основаниями, но разными степенями:
$a^{\frac{2}{3}}*a^{\frac{1}{4}}=\sqrt[3]{a^2}*\sqrt[4]{a}=\sqrt[12]{a^8}*\sqrt[12]{a^3}=\sqrt[12]{a^{11}}=a^{\frac{11}{12}}$.
Но заметим так же: $\frac{2}{3}+\frac{1}{4}=\frac{8+3}{12}=\frac{11}{12}$.
То есть: $a^{\frac{2}{3}}*a^{\frac{1}{4}}=a^{\frac{2}{3}+\frac{1}{4}}=a^{\frac{11}{12}}$.
Складывать дроби гораздо проще, чем работать с радикалами (нужно привести показатели к одинаковому виду и потом только перемножать). Поэтому принято переходить к степенным функциям с дробным показателем.

Пример.
Вычислить:
а) ${(27)}^{\frac{1}{3}}$.
б) ${(32)}^{\frac{3}{5}}$.
в) $0^{\frac{5}{7}}$.
г) ${(-32)}^{\frac{1}{5}}$.
Решение.
а) ${(27)}^{\frac{1}{3}}=\sqrt[3]{27}=3$.

б) ${(32)}^{\frac{3}{5}}=\sqrt[5]{{32}^3}={(\sqrt[5]{32})}^3=2^3=8$.

в) $0^{\frac{5}{7}}=\sqrt[7]{0^5}={(\sqrt[7]{0})}^5=0^5=0$.

г) Извлекать корень с дробным показателем мы можем только из положительного числа, ребята посмотрите на наше определение. Наше выражение не имеет смысла.
Кажется ${(-32)}^{\frac{1}{5}}=\sqrt[5]{-32}=-2$ - верная запись, но давайте внимательно посмотрим на наше выражение: ${(-32)}^{\frac{1}{5}}$=${(-32)}^{\frac{2}{10}}$=$\sqrt[10]{{(-32)}^2}$=$\sqrt[10]{1024}=2$.
Получили противоречивое выражение, хотя все операции выполнены верно, согласно свойствам и определениям. Поэтому математики запретили возводить в дробную степень отрицательные числа.

Ребята, запомните: в дробную степень мы можем возводить только положительные числа!

Определение. Пусть дана обыкновенная дробь $\frac{a}{b}$, $b≠1$ и $х>0$, тогда $x^{-\frac{p}{q}}=\frac{1}{x^{\frac{p}{q}}}$.

Например: $2^{-\frac{1}{4}}=\frac{1}{2^{\frac{1}{4}}}=\frac{1}{\sqrt[4]{2}}$.
$3^{-\frac{3}{5}}=\frac{1}{3^{\frac{3}{5}}}=\frac{1}{\sqrt[5]{3^3}}=\frac{1}{\sqrt[5]{27}}$.

Все свойства с которыми мы сталкивались при работе со степенными числами сохраняются и в случае рациональных степеней, давайте повторим свойства.

Пусть нам даны положительные числа $a>0$ и $b>0$, x и y – произвольные рациональные числа, тогда выполняются следующие 5 свойств:
1. $a^x*a^y=a^{x+y}$.
2. $\frac{a^x}{a^y}=a^{x-y}$.
3. ${(a^x}^y=a^{x*y}$.
4. $(a*b)^x=a^x*a^y$.
5. ${(\frac{a}{b})}^x=\frac{a^x}{b^x}$.


Пример.
Упростите выражение: $\frac{\sqrt{x}}{x^{\frac{1}{2}}+y^{\frac{1}{2}}}+\frac{\sqrt{y}}{x^{\frac{1}{2}}-y^{\frac{1}{2}}}$.
Решение.
Перепишем числители в виде степенных функций:
$\frac{x^{\frac{1}{2}}}{x^{\frac{1}{2}}+y^{\frac{1}{2}}}+\frac{y^{\frac{1}{2}}}{x^{\frac{1}{2}}-y^{\frac{1}{2}}}$.
Приведем к общему знаменателю:
$\frac{x^{\frac{1}{2}}(x^{\frac{1}{2}}-y^{\frac{1}{2}})+y^{\frac{1}{2}}(x^{\frac{1}{2}}+y^{\frac{1}{2}})}{(x^{\frac{1}{2}}+y^{\frac{1}{2}})(x^{\frac{1}{2}}-y^{\frac{1}{2})}}$ =$\frac{x-x^{\frac{1}{2}}*y^{\frac{1}{2}}+y^{\frac{1}{2}}*x^{\frac{1}{2}}+y}{x-y}$=$\frac{x+y}{x-y}$.

Пример.
Решить уравнения:
а) $\sqrt[5]{x^4}=1$.
б) $x^{\frac{4}{5}}=1$.
Решение.
а) Возведем обе части уравнения в пятую степень:
$x^4=1$.
$x=±1$.

б) Наше уравнение очень похоже на предыдущие. Если мы перейдем от записи корней к степенным функциям, то запись получится идентичная, но стоит учесть, что у нас сразу дано степенное выражение. По определению число х может быть только положительным, тогда у нас остается один ответ $х=1$.

Пример.
Решить уравнение: $x^{-\frac{2}{5}}+x^{-\frac{1}{5}}-12=0$.
Решение.
Давайте введем новую переменную: $y=x^{-\frac{1}{5}}$.
$y^2={(x^{-\frac{1}{5}})}^2=x^{-\frac{2}{5}}$.
Тогда наше уравнение примет вид обычного квадратного уравнения: $y^2+y-12=0$.
Решив уравнение, получим два корня: $y_1=-4$ и $y_2=3$.

Нам остается решить два уравнения: $x^{-\frac{1}{5}}=-4$ и $x^{-\frac{1}{5}}=3$.
Первое уравнение не имеет корней. Вспомним, что степенные функции с рациональным показателем определены только для положительных чисел.
Решим второе уравнение:
$x^{-\frac{1}{5}}=3$.
$\frac{1}{x^{\frac{1}{5}}}=3$.
$x^{\frac{1}{5}}=\frac{1}{3}$.
$\sqrt[5]{x}=\frac{1}{3}$.
$x=(\frac{1}{3})^5=\frac{1}{243}$.

Ребята, мы рассмотрели два примера решения иррациональных уравнений.

Давайте перечислим основные методы решений иррациональных уравнений.
1) Возведение обеих частей уравнения в одну и ту же степень (при использовании этого метода нужно проверять полученные решения, так как могут возникнуть посторонние решения).
2) Метод замены переменных (введения новых переменных).
3) Построение графиков функций. Обе части уравнения представляем в виде функций, строим их графики и находим точки пересечения графиков.

Задачи для самостоятельного решения


1. Вычислить:
а) ${64}^{\frac{1}{3}}$.
б) ${64}^{\frac{5}{6}}$.
в) ${81}^{\frac{2}{3}}$.
г) ${(-317)}^{\frac{3}{7}}$.
2. Упростите выражение: $\frac{\sqrt[3]{x}}{x^{\frac{1}{3}}-y^{\frac{1}{3}}}-\frac{\sqrt[3]{y}}{x^{\frac{1}{3}}+y^{\frac{1}{3}}}$.
3. Решить уравнение:
а) $\sqrt[3]{x^2}=8$.
б) $x^{\frac{2}{3}}=8$.
4. Решить уравнение: $x^{-\frac{2}{3}}-7x^{-\frac{1}{3}}+10=0$.