Умножение многозначных чисел а 4 классе.
Задачи и примеры по математике на тему: Умножение многозначных чисел. Скачать pdf.
4. УМНОЖЕНИЕ. ЗАКОНЫ УМНОЖЕНИЯ
186. 1) Вычислить сумму, заменив сложение умножением:
а) 73 + 73 + 73 + 73 + 73 + 73 + 73; б) 1 008 + 1008 + 1008.
2) Вычислить произведение, заменив умножение сложением:
а) 24 • 4; б) 3 015 • 3.
187. Найти числовое значение каждого из выражений:
а) 0 • 8; б) 805 • 1; в) 72 • 0; г) 1 • 16; д) 0 • 1; е) 1 • 0.
188. Вычислить значение каждого из выражений:
а) 1 373 • 2; б) 28 546 • 3; в) 3 745 • 4; г) 2 537 • 9; д) 16 023 • 6;
е) 30 541 • 7; ж) 491 • 5; з) 2 036 • 8.
Проверить правильность вычисленного произведения на счетах, заменяя умножение сложением.
189. Вычислить значение каждого из выражений:
а) 56 • 12; б) 37 • 29; в) 538 • 16; г) 354 • 74; д) 413 • 38; е) 605 • 43; ж) 701 • 54; з) 6 005 • 92.
190. Найти значение каждого из выражений наиболее простым способом:
а) 506 + 506 + 506 + 506 + 311; б) 314 + 314 + 314 + 87 + 87;
в) 3 209 + 3 209 + 3 209 + 485 + 485 + 485 + 485 + 485; г) 52 019 + + 52 019 + 432 + 432 + 432 + 432 + 432 + 432.
191. Вычислить значение каждого из выражений:
а) 1 763 • 504; б) 3 892 • 701; в) 41 507 • 1 008; г) 409 • 5 027;
д) 8 936 • 7 020; е) 7 014 • 1 040; ж) 25 108 • 3 019; з) 71640 • 2 015.
192. Заменить переменное х так, чтобы получились верные равенства, если х — один из элементов множества {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}:
193. Сколько минут и часов проводит ученик в школе в тот день, когда у него 5 уроков, причем 2 перерыва по 15 мин каждый и остальные по 10 мин каждый? Составить формулу решения.
194. Наблюдатель заметил, что через 5 сек, после того как блеснула молния, послышался удар грома. На каком расстоянии от наблюдателя происходила гроза, если скорость звука 330 м в секунду?
Объяснить, почему ответ на вопрос задачи можно получить при помощи действия умножения. .
Указание. Чтобы получить ответ на вопрос задачи, нужно 330 умножить на 5. а) Каждую секунду звук проходит 330 м. За 5 сек звук пройдет путь, в 5 раз больший. Чтобы увеличить число 330 в 5 раз, нужно выполнить действие умножения, б) Каждую секунду звук проходит 330 м; за 5 сек звук пройдет 330 + 330 + 330 + 330 + 330; сумму нескольких одинаковых слагаемых можно вычислить при помощи действия умножения. Мы привели два возможных способа (а и б) обоснования ответа на вопрос задачи.
195. Стриж кормит птенцов 20 раз в день и приносит за один раз 370 мелких насекомых. Сколько насекомых наловит пара стрижей летом для своих птенцов, если период выкармливания их длится 32 дня?
196. 1) Турист прошел 24 км. Сколько километров проехал бы за это же время велосипедист? (Указание. Использовать данные о средних .скоростях передвижения в приложениях.)
2) В колхозе на некоторой площади было высажено 90 ц картофеля. Сколько семян озимой ржи потребовалось бы для засева того же участка? Найти площадь участка. (Указание. Использовать в приложениях данные о средних нормах высева различных культур на 1 га.)
197. Теплоход «Метеор» и катер проходят вместе 100 км в час. «Метеор» проходит в час расстояние, в 3 раза большее, чем катер. Сколько километров в час проходит каждый из них?
Указание. Решим задачу составлением уравнения. Приводим возможный образец записи решения.
Требуется найти скорость теплохода и скорость катера. Пусть скорость катера х км в час; тогда скорость теплохода 3 •х км в час. Оба вместе за час проходят х + З-х (км); в условии сказано, что оба проходят в час 100 км; значит, можно составить уравнение: х + 3 •х=100; решаем его: 4 •х=100; х= 100 : 4; х = 25; скорость катера 25 км в час; скорость теплохода: 25∙3 = 75(kм в час).
Ответ: 25 км в час и 75 км в час.
198. 1) В двух пачках 600 листов писчей бумаги. Сколько листов в каждой пачке, если в одной в 5 раз больше, чем в другой?
2) На трех полках лежат 324 книги. На 2 -й полке книг лежит вдвое больше, чем на 1 -й, а на 3 -й — втрое больше, чем на 1 -й. Сколько книг на каждой полке?
199. 1) Картина с рамой стоит 19 руб. 80 коп., причем картина в 10 раз дороже рамы. Сколько стоит картина?
2) Стакан с подстаканником стоит 2 руб. 52 коп., причем стакан в 6 раз дешевле подстаканника. Сколько стоит стакан и сколько подстаканник?
200. 1) Сумма двух натуральных чисел 144. Одно из них в 7 раз больше другого. Найти каждое из чисел.
2) Сумма двух натуральных чисел равна 729. Одно из слагаемых в 8 раз меньше другого. Найти каждое слагаемое.
201. 1) Уменьшаемое в 4 раза больше вычитаемого, а разность равна 738. Найти уменьшаемое и вычитаемое.
2) Вычитаемое в 6 раз меньше уменьшаемого. Разность их равна 10 385. Найти уменьшаемое и вычитаемое.
202. Вычислить устно и правильность вычислений проверить на счетах:
а) 2 636 • 4; б) 1 473 • 2; в) 3 846 • 3; г) 65 083 • 7.
203. Письменно вычислить значения выражений, предварительно выполнив прикидку:
а) 558 • 16; б) 354 • 24; в) 473 • 38; г) 682 • 45.
204. 1) Вычислить устно значение каждого выражения:
а) 3 257 - 100; б) 978 - 10 000; в) 1 - 724 - 0 - 65; г) 8 750 - 1 000;
д) 1485 + (137 — 136) • 15; е) 539 — (434 + 366) • 0.
2) Вычислить письменно значение каждого выражения:
а) 67 059 • 809; б) 40 057 • 7 010; в) 71 050 • 9 001; г) 198 607 • 817;
д) 271 895 • 687; е) 47 059 • 4 036.
205. Проверить справедливость равенств:
а) 78 - 6 = 6 • 78; б) 307 - 18= 18 • 307; в) (25 + 35) • 7 = 60 • 7;
г) (25 + 35) • 7 = 25 • 7 + 35 • 7; д) 2 • 5 • 7 = 2 • 7 • 5 = 5 • 2 • 7 = 5 • 7 • 2 = 7∙2∙5 = 7∙5∙2.
206. Используя законы умножения, вычислить значения выражений:
1)2 • 13 • 5; 2) 2 • 8 • 9 • 5; 3)4 • 8 • 5 • 5; 4)25 • 7 • 4 • 11; 5)28 • 99;
6) 198 • 7; 7) (12 + 35) • 2; 8) (40 + 7) • 3.
207. В следующих примерах выполнить действие умножения:
а) 5 м 8 дм 9 м• 4; б) 15 кв. дм 37 кв. см• 6; в) Зи. м 54 кв. дм• 14; г) 26 куб. дм 254 куб. м• 8;д) 12 куб. м 700 куб. см• 9, е) 3 кг 875 г• 3; ж) 2 т 8 ц 45 кг• 5; з) 6 ч 40 мин 16 сек• 8.
208. Проверить справедливость каждого из следующих неравенств: а) 705 • 43 >698 • 39; б) 8 125 • 9 < 6 549 • 12; в) 734 • 346 < 601 • 895; г) 9 001 • 52 > 10 004 • 16.
209. 1) Найти площадь квадрата, если его периметр равен 20 см.
2) Найти периметр квадрата, если его площадь равна 64 кв. см.
210. 1) Вычислить площадь прямоугольника, если его длина 42 мм и ширина 23 мм.
2) Вычислить периметр и площадь прямоугольника, если его длина 47 мм и ширина 38 мм.
211. 1) Вычислить площадь поверхности и объем прямоугольного параллелепипеда, если его длина 25 см, ширина 18 см и высота 12 см.
2) Вычислить объем и площадь поверхности прямоугольного параллелепипеда, если его три измерения равны 35 мм, 26 мм и 41 мм.
212. Сделать модель прямоугольного параллелепипеда по размерам предыдущей задачи.
213. Чемодан имеет форму прямоугольного параллелепипеда, измерения которого равны: 60 см, 40 см и 25 см. Для этого чемодана нужно сшить чехол. Сколько квадратных сантиметров материи пойдет на чехол? Составить формулу решения.
214. Фанерный ящик для посылки имеет размеры 40 см, 20 см и 15 см. Его перевязывают шпагатом, как показано на рисунке 8.
Сколько сантиметров шпагата нужно отрезать, чтобы перевязать посылку, если на узел и концы оставляют 50 см? Составить формулу решения.
215. Железный бак, имеющий форму прямоугольного параллелепипеда с размерами 15 дм, 9 дм и 3 дм, нужно снаружи покрасить. Достаточно ли для этого банки краски весом 500 г, если на покраску 1 кв. дм расходуется 1 г краски?
21b. Ящик, имеющий форму прямоугольного параллелепипеда с размерами 12 дм, 4 дм и 8 дм, окантовывается по ребрам полосами жести. Достаточно ли для этого листа жести прямоугольной формы размером 60 слх 80 см, если ширина полосы для окантовки берется 4 см?
217. 1) Модель куба имеет ребро в 10 см. Чему равен объем этой модели?
2) Модель куба имеет объем, равный 125 куб. см. Ребро куба 5 см. Найти площадь грани куба. Нельзя ли решить эту задачу, если дано только ребро куба 5 см? Нельзя ли решить эту же задачу, если дан только объем куба 125 куб. см?
218. 1) Объем комнаты, форма которой — прямоугольный параллелепипед, равен 75 куб. м. Высота комнаты 3 м. Найти площадь пола комнаты.
2) Мальчик из бумаги хочет сделать модель прямоугольного параллелепипеда, чтобы его объем составил 60 куб. см. Высоту
параллелепипеда он берет 5 см. Каковы два других измерения модели? Сколько решений имеет задача?
219. По указанным размерам на рисунке 9 найти объем куба и объем прямоугольного параллелепипеда. Объем какого тела больше и на сколько?
220. Вычислить значение каждого из выражений:
1) (69 + 97) • 47; 2) (607 — 427) • 63;
3) 89 • 17 + 108.14 — 99 • 18; 4) 830 + 357 • 527 + 491;
5) (830 + 367) • 527 + 481; 6) (830 + 367) • (517 + 491);
7) 840 + 357∙(557 + 451); 8) 405 + 451 • 75 — (739 — 652).
221. Вычислить значение каждого из выражений:
1) 79 • 68 + 435 268 — (767 — 677) • 51 • 96;
2) 78 • 607 + 19 •[97 + 904∙(2 071 • 1 968)];
3) 805 001 + [908 • 307 — 65 • (413 — 299)1 — 205 • 34;
4) (976 • 887) • 19 + [(1 007 — 965)∙ 14 — 48] • 16;
5) 1 017 — 418 • 17 • 18 — (78 — 56) • 9;
6) (9 857 + 545) • 105 — 996 210 + 78∙(l 080 — 789).
222. Вычислить значение каждого из выражений с переменными:
1) 3∙α при α=1 907j 2) 43a + 7b при a = 2 011 и b = 635;
3) 71 х— 4 075 при х=96; 4) 4∙ 17∙25∙y + 2 108 при y =13;
5) 25∙n∙8 при n = 452; 6) 165 + 2x + 435 при x = 637.
223. Вычислить значение каждого из выражений с переменными (вычисления произвести наиболее простым способом) :
1) x∙2∙11 — 800 при х = 40; 2) a∙5∙300 — 2 500 при а = 5;
3) 465 + 3p + 235 при р = 200; 4) 592 + 2x• 392 при х = 50;
5) 573 + 3y + 427 при у=12; 6) 1 068 — 5x + 232 при х = 37.
224. Решить уравнения:
1) x∙7∙11 = 770; 2) α- 2 - 31 =62; 3) 317 + х+ 183 = 1 000;
4) 1 876 + 4 х— 676= 1 500; 5) 891 + 3y— 191=2 200.
225. Вычислить значение каждого из выражений, применяя наиболее простой способ (используя законы умножения) :
1) (70 + 8) • 6; 2) (60 — 7) • 5; 3) (200 — 13) • 6;
4) 198 • 8; 5) 397 • 12; 6) 498 • 23.
226. Вычислить значение каждого из выражений, применяя распределительный закон умножения:
1) 305 • 32 + 305 • 68; 2) 763 • 71 + 237 • 71; 3) 256 • 50 — 156 • 50;
4) 964 • 75 + 36 • 75; 5) 284 • 64 — 184 • 64; 6) 621 • 19 + 379 • 19.
227. Вычислить значение каждого выражения с переменным, применяя распределительный закон умножения:
1) (76 + x)∙3 при х = 24; 2) 77 •З + х•З при х = 23;
3) 26а— 266 при α = 208 и 6=108; 4) 37р— 37 • 20 при р=120;
5) 327р — 127 • 94 при р = 94; 6) 325 • 61 — 175 х при х = 61.
228. Вычислить значение каждого выражения, применяя распределительный закон умножения:
1) 2x + 6x при х=105; 2) 12x+ 108x при х = 5;
3) 13y— 26 • 15 при y= 50; 4) 17a + 51∙49 при а = 2;
5) 98b— 93b при b= 1 027; 6) 611с— 311с при c=1050.
229. Решить следующие задачи с помощью уравнений:
а) При каком значении переменного х выражение 11 х на 36 больше 7 х?
б) При каком значении переменного у выражение 15y + 7y равно 11О?
в) При каком значении переменного а сумма выражений ба и 11а равна 6817?
г) При каком значении переменного р выражение 14р меньше выражения 17р на 4 062?
230. При каких значениях переменного каждое из следующих равенств обращается в верное равенство:
а) 208 •х = х• 208; б) 152∙73x = x∙73∙ 152; в) 14 •y• 93 = 42 • 31 •у; г) Пх+ 17 х=282; д) (17 +y)∙6= 17 • 6 + 6y; е) (17 + 5) • 9=7 • 9 + 9 •х?
231. При каких натуральных значениях переменного х каждое из следующих неравенств будет верным:
1) 414x + 765∙ 18 < 54 • 324; 2) 58 х+ 167 • 20 < 32 • 108;
3) 267x + 813∙57 < 5 32 7 • 9; 4) 15 х+ 618 • 32 < 12 • 1 663?
232. Пассажирский поезд выходит из Москвы в 10 ч 40 мин и приходит на станцию назначения в 14 ч 10 мин. На каком расстоянии от Москвы находится конечный пункт маршрута поезда? Использовать таблицу средних скоростей передвижения (в приложениях).
233. Из Москвы и Саратова одновременно выходят два поезда навстречу друг другу. Первый делает 40 км в час, а второй— 48 км в час. На каком расстоянии окажутся эти поезда один от другого через 8 ч после выхода, если расстояние от Москвы до Саратова 892 км?
234. В резервуар проведены две трубы. Через первую вода втекает со скоростью 40 куб. дм в минуту, а через вторую вытекает 900 куб. дм в час. Если открыть обе трубы одновременно, то пустой резервуар наполнится через 6 ч. Найти вместимость резервуара.
Составить формулу решения.
235. Из 1 куб. м древесины можно получить 165 кг искусственного волокна, а из него можно изготовить 1 500 м ткани или 4 000 пар чулок. Сколько искусственного волокна, ткани или чулок можно изготовить из 15 куб. м древесины? Сколько хлопка или шелковичных коконов может заменить 15 куб. м древесины, если 1 куб. м ее заменяет хлопок, собранный с 50 га, или шелк с 320 000 шелковичных коконов?
236. 1) Который теперь час, если прошедшая часть суток в 5 раз меньше оставшейся?
2) Который теперь час, если оставшаяся часть суток в 3 раза меньше прошедшей?
237. 1) Если неизвестное число умножить сначала на 7, а потом его же умножить на 15 и полученные произведения сложить, то в сумме получится 58 520. Найти неизвестное число.
2) Если неизвестное число умножить сначала на 11, а потом его же умножить на 8, то первое произведение окажется на 2448 больше второго. Найти неизвестное число.
Произведение одинаковых сомножителей
238. 1) Записать данные произведения в виде степени:
а) 2∙2∙2∙2∙2∙2∙2∙, б) З•З•З•З•З; в) 5 • 5 • 5 • 5; г) 4 • 4 4 • 5 • 5; д) 7∙7∙7∙7∙7∙13∙13∙13∙13; е) 9 • 9 • 2 • 2 • 2.
2) Записать данные степени в виде произведений и вычислить их значения:
а) З3; б) 74; в) 2е; г) 52; д) 23; е) З4.
239. 1) Из множества А чисел А {9; 36; 18; 24; 81} выписать те числа, каждое из которых можно представить в виде произведения двух одинаковых сомножителей.
2) Представить в виде произведения двух одинаковых сомножителей каждое из чисел:
а) 4; б) 16; в) 36; г) 49; д) 64; е) 81; ж) 100; з) 144.
240. 1) Сторона квадрата 4 см 3 мм. Найти периметр квадрата и его площадь.
2) Периметр квадрата равен 10 см 4 мм. Найти площадь этого квадрата.
241. 1) Пол балкона облицовывают кафельными плитками, имеющими форму квадрата со стороной 15 см. Сколько потребуется плиток, если пол имеет форму прямоугольника со сторонами 1 м 80 см и 75 см?
2) Ребро куба 18 мм. Найти площадь его поверхности и объем. 242. 1) Объем куба равен 27 куб. см. Найти длину ребра куба.
2) Площадь квадрата равна 900 кв. см. Найти сторону квадрата.
243. 1) Вычислить площадь прямоугольника, если его длина 28 см и ширина 25 см.
2) Увеличить меньшую сторону прямоугольника в два раза, оставив большую сторону равной 28 см. Вычислить площадь нового прямоугольника.
3) Сравнить значения площадей обоих прямоугольников. Почему площадь второго прямоугольника в 2 раза больше площади первого?
4) Вычислить, как изменится значение площади прямоугольника, если его большую сторону (28 см) увеличить в 2 раза, а меньшую сторону (25 см) оставить без изменения?
244. 1) Вычислить площадь прямоугольника, если его стороны равны 40 см и 15 см.
2) Во сколько раз уменьшится площадь прямоугольника, если его большую сторону (40 см) уменьшить в 2 раза, а меньшую оставить без изменения (15 см)?
245. 1) Во сколько раз уменьшится площадь прямоугольника, если большая его сторона равна 40 см, а меньшая (15 см) уменьшена в 3 раза?
2) Изменится ли значение площади прямоугольника, если большую его сторону (40 см) увеличить в 3 раза, а меньшую сторону (15 см) во столько же раз уменьшить?
246. 1) Вычислить площадь прямоугольника, если его длина равна 12 см и ширина равна 6 см.
2) Длина прямоугольника равна 24 см, а ширина равна 18 см. Вычислить площадь этого прямоугольника.
247. 1) Вычислить, во сколько раз площадь прямоугольника во второй (№ 246) задаче больше площади прямоугольника первой задачи? Решить задачу вычислением и графически (построить в тетради каждый из прямоугольников и убедиться, что площадь второго в 6 раз больше площади первого).
2) Объяснить, почему площадь второго прямоугольника в 6 раз больше площади первого прямоугольника.
248. Как изменится значение произведения, если:
1) один из сомножителей разделить на 2, а значение других сомножителей оставить без изменения;
2) значение одного из сомножителей уменьшить в 8 раз, а значение остальных сомножителей оставить без изменения;
3) значение одного из сомножителей увеличить в 5 раз, а значения остальных сомножителей оставить без изменения;
4) значение одного из сомножителей умножить на 4, а значения остальных сомножителей оставить без изменения?
249. Как изменится значение произведения, если:
1) значение одного из сомножителей увеличить в 2 раза, а значение другого сомножителя увеличить в 5 раз;
2) значение одного сомножителя умножить на 3, а значение другого сомножителя умножить на 4;
3) значение одного сомножителя увеличить в 4 раза, а значение другого сомножителя уменьшить в 4 раза;
4) значение одного из сомножителей увеличить в 6 раз, а значение другого уменьшить в 3 раза?
250. 1) Во сколько раз увеличится число 3 527, если его сначала умножить на 8 и полученное число умножить еще на 3?
2) Во сколько раз увеличится число 2 483, если его сначала умножить на 6 и полученное произведение разделить на 3? Как, не выполняя действия с числом 2483, обосновать, что это число увеличится в 2 раза?
3) Как следует изменить значение одного сомножителя, если другой сомножитель умножить на 5, причем значение произведения должно остаться без изменения?
4) Значение одного сомножителя умножено на 10. Как следует изменить значение другого сомножителя, чтобы значение произведения увеличилось в 5 раз?
251. 1) Первый сомножитель равен 9. На какое число увеличится произведение двух сомножителей, если второй из них увеличить на 2?
Указание. Вспомнить, какое действие называется умножением, и распределительный закон умножения.
2) Как изменится значение произведения двух чисел, если один из сомножителей увеличить на 3, а другой сомножитель оставить без изменения?
252. Вычислить числовое значение каждого выражения наиболее простым способом, раскрыв предварительно скобки или применив законы умножения:
1) (325 • 11) • 4; 2) (25 + 7)∙8∙,
3) 25 • 18 + 25 • 22; 4) 3 706 + (412∙701 — 412);
5) 76 - 205 — (83 — 7); 6) 601 • 73 — (92 •х + 73) при x = 231.
253. Решить уравнения:
1) 573 + (812 +х)= 1 925; 2) х— (521 — 398)= 1 280;
3) 413 — (285 + х) = 80; 4) 365 — (201 —х) = 164.
254. Вычислить числовое значение каждого из выражений наиболее простым способом:
1) 2a + 3a при а = 617; 2) 59x + x при х=108;
3) 75b — 45b + 209 при b = 62;
4) 75 х— (326 — 5 х) при х=10;
5) 605 • 918 — (х + 5 • 918) при х=1007;
6) 704 • 313 — (313 • 4 —х) при x = 400.
255. Найти числовое значение каждого из следующих выражений наиболее простым способом:
1) 768 • 125; 2) 3 482 • 25; 3) (6 632 + 185 + 2 368) • 10;
4) 160 279 — (209 • 401 + 679).
КОНТРОЛЬНОЕ ЗАДАНИЕ К § 4
1) Найти значение числового выражения:
(784 • 459 — 606 • 516) • (478 • 395 — 515 • 304) + 95 • 1 327.
2) Для оплаты месячного расхода электроэнергии было снято показание электросчетчика 832 киловатт-часа. Сколько нужно уплатить за электроэнергию, если 1 киловатт-час стоит 4 коп., а при оплате за прошлый месяц показание счетчика было 743 киловатт-часа?
3) Ширина прямоугольного участка втрое меньше его длины. Вычислить площадь этого участка, если длина забора вокруг него равна 920 м?
4) Ученик должен был перемножить числа 63 и 36. Он перемножил отдельно десятки и отдельно единицы и полученные произведения 1800 и 18 сложил. Ученик дал ответ 1818. Правильный ли ответ дал ученик? Какой ответ является правильным? Каким законом умножения пользуются при перемножении многозначных чисел?
5) Сумма двух чисел равна 682. Одно из них оканчивается нулем. Если нуль в этом числе зачеркнуть, то получится другое число. Найти эти числа.
6) Как изменилось числовое значение произведения, если один сомножитель умножили на 12, а другой сомножитель разделили на 4?
7) Как наиболее просто вычислить числовое значение произведения 6024 - 25?
УМНОЖЕНИЕ ЧИСЕЛ НА 10 И НА 100
Сравни числа в каждом столбике, объясни, чем они похожи и чем различаются.
5 32 19 70 4 1
50 320 190 700 400 100
К каждому из чисел 2, 7, 4, 9 припиши справа нуль. Прочитай полученные числа. Во сколько раз увеличилось каждое число? Сделай вывод.
К каждому из чисел 5, 3, 1, 8 припиши справа два нуля. Прочитай полученные числа. Во сколько раз увеличилось каждое число? Сделай вывод.
При умножении числа на 10 (или на 100) достаточно к этому числу приписать справа один нуль (или два нуля).
Например: 1) 38 - 10 = 380; 2) 60 • 10 = 600; 3) 7 • 100 = 700.
Выполни действия.
23 * 10 48 * 10 90 * 10 100 * 10 10 * 10 * 10
4 * 100 7 * 100 10 * 100 5 * 100 2 * 100 *5
Ширина прямоугольника равна 6 м, а длина — 10 м. Найди площадь прямоугольника.
За 2 ч поезд прошёл 100 км, проходя в час одно и то же расстояние. Сколько километров пройдёт этот поезд за 4 ч, если будет двигаться так же?
Реши задачу двумя способами.
Сравни значения выражений, не проводя вычислений.
147 + 580 и 246 + 580 920 - 180 и 910 - 180
650 + 179 и 650 + 180 750 - 463 и 750 - 460
На ферме 160 л молока разлили в 5 бидонов, ёмкостью 20 л каждый, и в несколько бидонов, ёмкостью 15 л каждый. Сколько бидонов ёмкостью 15 л для этого понадобилось?
Изменится ли частное двух чисел, если:
а) делитель не изменять, а делимое увеличить в 3 раза; в 5 раз;
б) делимое и делитель увеличить в 2 раза?
Приведи примеры.
Из одной заготовки получается 6 деталей. Отходы от шести заготовок дают возможность получить из них ещё одну заготовку. Сколько всего деталей можно сделать из 36 заготовок?
Сравни.
500 : 5 и 10 36 * 10 и 3 ■ 100 40 • 8: 10 и 400 : 8 • 10
90-10 и 900 70 : 7 и 700:7 600 : 6 : 10 и 60 : 6 • 10
Купили 2 пачки бумаги для принтера, по 145 р. за пачку, и 3 набора файловых папок, по 86 р. за набор. Сколько всего денег израсходовали?
Выполни деление с остатком и сделай проверку.
617:9 785:6 836:3 908:7
На овощной базе 900 кг помидоров разложили в 100 ящиков, во все ящики поровну. На рынок отвезли 40 ящиков, в магазины — на 12 ящиков меньше, чем на рынок, а остальные помидоры отвезли в столовые. Сколько килограммов помидоров отвезли в столовые?
Запиши выражения и вычисли их значения.
1) Сумму чисел 560 и 40 уменьшить в 10 раз.
2) Частное чисел 320 и 8 увеличить на 25.
3) Произведение чисел 52 и 9 уменьшить в 6 раз.
4) Частное чисел 234 и 9 увеличить в 7 раз.
В хозяйстве у фермера 10 коров. В сутки каждой корове дают по 8 кг сена, а комбикорма в 4 раза больше. Сколько всего килограммов кормов дают в сутки всем коровам?
Земельный участок прямоугольной формы длиной 35 м и шириной 28 м разделили забором пополам. Найди площадь каждой части этого участка.
Имеется 5 кусков цепи, по 3 кольца в каждом куске. Догадайся, какое наименьшее число колец придётся расковать и сковать, чтобы соединить эти куски в одну цепь.
УМНОЖЕНИЕ ЧИСЛА НА ПРОИЗВЕДЕНИЕ
Пример. Вычислить значение выражения 79 • (2 • 5).
Умножить число 79 на произведение чисел 2 и 5 можно разными способами.
1-й способ. Согласно правилу порядка выполнения действий со скобками вычислим сначала произведение чисел 2 и 5, получим 10, а затем 79 умножим на это число. В ответе получится 790.
79 -(2 * 5) = 79 - 10 = 790
2-й способ. Умножим сначала число 79 на первый множитель 2 и полученный результат 79 • 2 = 158 умножим затем на второй множитель 5. Получим 158 • 5 = 790.
79^(2 • 5) = (79 • 2) • 5 = 158 * 5 = 790
3-й способ. Умножим сначала число 79 на второй множитель 5 и полученный результат 79 • 5 = 395 умножим затем на первый множитель 2. Получим 395 • 2 = 790,
79∙ (2∙ 5) = (79 ∙5)-2 = 395*2 = 790
Значение произведения нескольких множителей не меняется от порядка выполнения действий.
Заметим при этом, что для данного выражения первый способ удобнее.
Найди значение каждого выражения тремя способами.
4∙(6∙3) 124∙(2∙3) 106∙ (4-2)
Вычисли, выбрав удобный порядок действий.
5 • (2 ♦ 64) 8 • (25 * 4) 2 • (93 • 5)
Реши задачу выражением.
1) В четырёх залах повесили по 6 люстр, по 25 лампочек в каждой люстре. Сколько всего лампочек в этих люстрах?
2) На трёх машинах перевезли по 10 клеток с кроликами, в каждой из которых по 4 кролика. Сколько всего кроликов перевезли на этих машинах?
Спортивную площадку прямоугольной формы нужно увеличить в 3 раза. Найди площадь новой спортивной площадки, если длина прежней была равна 10 м, а ширина — 9 м.
Составь задачу по таблице и реши её.
Наименование товара | Цена | Стоимость |
Куртка | 570 р. |
► 934 р. |
Кроссовки | ? | |
Бейсболка | 138 р. |
Составь задачи, обратные данной, и реши их.
Вычисли значения выражений и сравни их.
157 + 157 + 157 + 157 + 157 + 213
208 + 208 + 208 + 208 + 167
312 + 86 + 86 + 86 + 86 + 86 + 86 + 86 + 86
Митя старше своего брата на 5 лет, но моложе мамы в 3 раза. Сколько лет Мите и сколько лет его маме, если Митиному брату 6 лет? Схематический чертёж поможет тебе решить задачу.
Купили 12 синих воздушных шаров, по 8 р. за шар, и 8 красных воздушных шаров, по 6 р. за шар. Во сколько раз больше заплатили за синие шары, чем за красные?
Сравни.
115 см и 15 дм 30 дм и 3 м 483 см и 4 м 83 см
1 км и 200 м 612 см и 7 м 205 см и 25 дм
В магазин привезли 380 кг яблок, апельсинов в 4 раза меньше, чем яблок, а груш в 3 раза больше, чем апельсинов. Сколько килограммов груш привезли в магазин?
Ваня и Саша живут в одном доме. Ваня идёт от дома до школы 30 мин, а Саша — 40 мин. Через сколько минут Ваня догонит Сашу, если Саша вышел из дома на 5 мин раньше Вани?
Вычисли значения каждого выражения тремя способами. Какой из этих способов удобнее?
79∙ (5 ∙ 2) 54 -(3 - 2) 163 • (2 • 4)
Вычисли, выбрав удобный порядок выполнения действий.
128 + 374 + 72 + 226 48 • 3 • 5 25 • 7 • 4
В ящике 14 кг яблок, в корзине — в 2 раза больше, чем в ящике, а в ведре — в 6 раз меньше, чем в ящике и корзине вместе. Сколько килограммов яблок в ведре?
Начерти четыре луча: OA, OB, ОС и OD. Никакие два из этих лучей не должны лежать на одной прямой. Запиши обозначения углов, сторонами которых являются эти лучи.
Сравни значения выражений, не выполняя вычислений полностью.
56 • 8 и 56 • 2 • 4 32 • 7 и 32 • 3 + 32 • 4
34-6 и 34 - 3 - 3 19- Зи 19-8- 19-2
81 ■ 9 и 81 • 2 • 5 74 • 8 и 74 - 4 + 75 • 4
В стакан вмещается 8 столовых ложек манной крупы, по 25 г в каждой. Сколько чайных ложек манной крупы вмещается в такой стакан, если в одной чайной ложке 8 г крупы?
Для покраски стен было израсходовано 7 одинаковых банок зелёной краски и ещё 8 кг белой краски. Всего было израсходовано 43 кг краски. Сколько килограммов зелёной краски было в одной банке?
Выполни вычисления.
(46 + 18): 16 • 9 - 80 : 5 (24 • 3 - 12): 6 - 8 : 20
72 ■ (45 : 9 • 6 - 20) + 58 350 : 7 : 2 + (38 - 9) • 3
Вычисли удобным способом.
268 -(168 + 70) 479 -(50 + 79) 198 + 399 + 167 + 226
435 + 65 + 19 600 -(30 + 270) 286 + 114+ 279 + 21
Заполни пропуски в таблице, выполнив вычисления.
Длина прямоугольника | 2 см | 22 см | 32 см | 42 см | ||
Ширина
прямоугольника | 3 см | 3 см | 3 см | 3 см | 3 см | |
Периметр прямоугольника | 30 см | 50 см | 110 см |
Объясни, почему периметр прямоугольника увеличивается на 20 см.
В гостиницу приехали 100 туристов. Из них 10 человек не знали ни немецкого, ни французского языка, 75 туристов знали немецкий язык и 83 туриста знали французский. Сколько туристов знали оба языка: французский и немецкий?