Урок по математике для 1 класса. Геометрические фигуры

Урок и презентация на тему:
"Точка, прямая и кривая линии, отрезок, луч, ломаная"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.



Скачать: Точка, прямая и кривая линии, отрезок, луч, ломаная (PPTX)

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 1 класса
Тренажер по Дорофееву Г.В.     Тренажер по Демидовой Т.Е.





Точка


Дорогие ребята, сегодня вместе с нашими героями мы будем изучать простейшие геометрические фигуры.
Вжик
Начнем с точки. В математике точка обозначается буквой алфавита, например, буквой А. В тетради это выглядит так.
Точка
Если у вас на рисунке есть несколько точек, то их необходимо называть разными буквами, чтобы не путаться.
Несколько точек

Линии


Вжик нарисовал линию. В математике линию принято обозначать строчными латинскими буквами, например, буквой b.
Линия
Если на рисунке несколько линий, то разные линии нужно обозначать разными буквами.
Несколько линий
Прямая линия
Линия называется прямой, если она нигде не искривляется.
Вжик нарисовал несколько прямых линий разного цвета.
В математике прямая линия бесконечная, а это значит, что у неё нет ни начала, ни конца.

Линии

Кривая линия
Чип нарисовал несколько кривых линий. Каждый может их нарисовать от руки.
Кривые линии
Отрезок
Если отрезать от прямой линии некоторую часть, то получится отрезок с началом и концом, что мы попробуем сделать. Получится отрезок AB. У данного отрезка есть длина, и обозначается она так, АB = 4 см.
Отрезок

На этом рисунке нарисовано 2 отрезка: АВ и СЕ.
Два отрезка

Луч
Луч – часть прямой, которая имеет начало, но не имеет конца. Обозначается, как показано на рисунке.
Луч

Ломаная линия
Ломаная линия – это фигура, которая состоит из отрезков, последовательно соединенных своими концами.
Ломаная
Ломаная на рисунке обозначается $A_1A_2A_3A_4A_5A_6$.


Ребята, определите, какие фигуры изображены на рисунке? Назовите каждую фигуру.
Фигуры
Фигуры
Луч и отрезок

Методические указания по теме:

По программе ученики начальных классов знакомятся с плоскостными фигурами, именуемыми вообще многоугольниками; в частности с различного вида треугольниками, прямоугольниками и другими видами четырех-угольников, фигурами с большим числом сторон: пятиугольниками, шестиугольниками, которые легко можно разбить на треугольники и четырехугольники.
При ознакомлении с указанными фигурами необходимо с самых первых шагов (когда дети пользуются различными фигурами как дидактическим материалом) дать практически понятие детям о том, что треугольник, четырехугольник, прямоугольник, квадрат и вообще многоугольник— это часть плоскости (поверхность бумаги, картона, фанеры, ткани), ограниченная сторонами — отрезками прямых линий, как в прямоугольнике или треугольнике, или кривой линией, как в круге, или кривой и прямой, как в полукруге. Надо избегать обычной, повторяющейся и в пособиях, и в учебниках ошибки, заключающейся в том, что вместо понятия о треугольнике, четырехугольнике и вообще о всяком многоугольнике детям внедряется понятие о контуре этой фигуры. Например, ученика спрашивают, сколько нужно взять палочек, что-бы сложить квадрат (вместо того чтобы спросить, сколько надо взять палочек, чтобы составить контур, границы квадрата). После таких вопросов ученик начинает думать, что квадрат, треугольник, прямоугольник можно сделать из палочек.
Чтобы избежать этих ошибок, мы предлагаем знакомство с треугольником, прямоугольником и любым многоугольником начинать путем вырезывания этой фигуры из бумаги (контур фигуры очерчивается по линейке карандашом, а затем по начерченному контуру ножницами или ножичком вырезывается фигура). Вторым этапом ознакомления с такими фигурами являются чертежи на бумаге с обязательной затушевкой. Пусть ученик знает, что когда он начертил только стороны треугольника или квадрата, то это только контур (границы) фигуры, а когда он сделает затушевку, то будет видеть всю фигуру.
Если же учитель желает провести с учениками практическую работу с палочками, то им можно предложить примерно такие вопросы:
1) Сколько надо взять палочек и каких, чтобы из них сложить все стороны (или границы) квадрата? треугольника с равными сторонами?
2) Какая получится линия из сторон квадрата, если убрать одну сторону квадрата, т. е. одну палочку? (Получится ломаная линия из трех равных отрезков.) И т. п.
При изучении сотни ученики I класса знакомятся с мерами длины — сантиметром, дециметром и метром, а также с мерой массы — килограммом и с мерой емкости— литром. С мерой длины сантиметром желательно познакомить детей раньше, лучше в самом начале за¬нятий, так как знакомство с этой мерой даст возможность разнообразить занятия различными задачами практического характера.
Практика:
52. Начертите три прямые линии: одну —слева направо (по строке), другую — снизу вверх, третью — наискось. Подумайте и скажите, можно ли каждую из этих линий продолжить в обе стороны. Чертите хорошо отто-ченным карандашом по линейке слева направо. Линейку придерживайте левой рукой, а карандаш — наклонно.
Указание. Надо показать, как правильно проводить прямую линию. Для этого можно листок клетчатой бумаги при¬крепить кнопками к доске и по¬казать, как держать линейку и вести карандаш. После этого необходимо проследить, как каждый из учеников выполняет это задание, и тем, кто делает неправильно, показать в тетради, как надо держать линейку и карандаш. Если этого не сделать вначале, то потом уйдет больше времени на поправки и указания.
53. Отметьте в тетради точку и проведите через нее две прямые линии. Подумайте, можно ли через эту же точку провести еще прямые линии. Проведите еще две прямые через эту точку и скажите, сколько еще можно провести прямых линий через ту же точку.
Указание. Дети должны сделать вывод, что через одну точку можно провести сколько угодно прямых.
54. Отметьте две точки и проведите через них прямую линию. Можно ли через эти две точки провести еще прямую линию, чтобы она не слилась с первой? Теперь попробуйте провести кривую линию, чтобы она прошла через те же две точки. Можно ли еще через те же две точки провести кривую линию? А сколько кривых линий можно провести через две точки?
55. Начертите 6 пар прямых линий. Всмотритесь в них внимательно и скажите, чем отличаются друг от друга 1, 3 и 6-я пары линий от 2, 4 и 5-й пар.
Найдите у себя в тетрадях и в классе такие пары прямых линий, как 1, 3, 6-я. Такие линии не пересекаются друг с другом. Их много в окружающей нас обстановке (две противоположных стороны тетради, окна, двери и т. п.). Найдите теперь такие две пары линий, которые пересекаются, как 2, 4, 5-я. Их тоже можно найти в тетрадях и в классе.
56. Начертите пару непересекающихся прямых и пару пересекающихся прямых. Все прямые линии на бумаге или на доске чертятся не полностью, они могут быть продолжены в обе стороны сколько угодно.
57. На этом чертеже даны две прямые линии. Какие они — пересекающиеся или непересекающиеся? Как это узнать? Как найти точку их пересечения?
Указание. Ученики должны догадаться, что обе эти прямые надо продолжить вправо.
58. Начертите две такие прямые линии, которые на чертеже не пересекаются, но должны пересечься при продолжении, и найдите точку их пересечения.
59. Начертите прямую линию и пересеките ее в двух местах черточками (штрихами). Этими черточками мы ограничиваем (отрезаем) кусочек прямой линии, и эта часть прямой линии от одной черточки до другой называется отрезком прямой линии или просто отрезком. Вокруг вас много отрезков: ребра (стороны) тетради, стекла, доски, двери — все это части прямых линий, которые ограничены с двух концов, значит, они являются отрезками.
60. Отметьте на бумаге две точки и проведите через них прямую линию. Как можно назвать ту часть линии, которая находится между точками? Можно ли провести другой отрезок между теми же точками, который не сов-пал бы с первым отрезком?