Алгебра – 10 класс. Приращение аргумента, приращение функции

Урок на тему: "Приращение аргумента, приращение функции"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.



Скачать: Приращение аргумента, приращение функции (PDF)





Что будем изучать:


1.Определение приращения аргумента, приращения функции.
2. Непрерывная функция и приращение.
3. Примеры.


Определение приращения аргумента и приращения функции


Ребята, мы с вами научились находить пределы функции в точке. Важным остается вопрос, как изменяется значение функции при изменении значения аргумента около этой точки?
Математики ввели такое понятие – приращение аргумента и функции. Давайте запишем определение.

Определение: Пусть функция $y=f(x)$ определена в точках $x_0$ и $x_1$. Разность $x_1-x_0$ называют приращением аргумента, а разность $f(x_1)-f(x_0)$–приращением функции.
Иначе говоря, узнаем прирост точки $x_0$ в точке $x_1$. Приращение аргумента обозначают как $Δx$, читается как дельта x.
Приращение функции обозначают, как $Δy$ или $Δf(x)$.
Из нашего определения следует: $x_1-x_0=Δx$ => $x_1= Δx+x_0$ и $f(x_1)-f(x_0)=Δy$. Тогда получаем важное равенство: $Δy=f(x_0+ Δx)-f(x_0)$. Приращение аргумента и функции Приращение функции может быть как положительным, так и отрицательным.

Давайте рассмотрим пример.
Найти приращение функции $y=х^3$ при переходе от $x_0=2$ к точке:
а) $x=2,1$; б) $x=1,9$.

Решение:
Обозначим $f(x)=х^3$.
Имеем: $f(2)=2^3=8$.

а) Воспользуемся формулой $Δy=f(x_0+ Δx)-f(x_0)$.
Нам надо найти значение $f(2,1)$.
$f(2,1)=2,1^3=9,261$.
$Δy= f(2,1)- f(2)= 9,261-8=1,261$.
б) $f(2)=8$.
$f(1,9)=1,9^3=6,859$.
$Δy= f(1,9)- f(2)= 6,859-8=-1,141$.

Ответ: а) $1,261$; б) $-1,141$.

Непрерывная функция и приращение


Ребята, давайте вернемся к определению непрерывной функции, и посмотрим на него с помощью приращений.
Вспомним определение непрерывной функции.
Определение. Функцию $y=f(x)$ называют непрерывной в точке $x=a$, если выполняется тождество: \[\lim_{x \rightarrow a}f(x)=f(a)\]
Обратим внимание: $x →a$, тогда $(x-a) →0$ т.е. $Δx → 0$.

Также заметим: $f(x) → f(a)$ , значит $f(x) - f (a) → 0$ т.е. $Δy → 0$.


Определение непрерывности функции в точке можно записать так.
Функция $y=f(x)$ непрерывна в точке $x=a$, если в этой точке выполняется следующее условие: если $Δx→0$, то $Δy → 0$.

Примеры


1. Для функции $y=kx+b$ найти:
а) приращение функции при переходе от фиксированной точки $x$ к $x+ Δx$;

б)предел отношения приращения функции к приращению аргумента при условии, что приращение аргумента стремится к нулю.

Решение:

а) $f(x)= kx+b$.
$f(x+ Δx)=k(x+Δx)+b$;
$Δy= f(x+ Δx)-f(x)= k(x+Δx)+b-( kx+b)= kx+kΔx+b – kx-b= kΔx$.

б) Найдем требуемый предел: $\lim_{Δx \rightarrow 0}\frac{Δy}{Δx}=\lim_{Δx \rightarrow 0}\frac{kΔx}{Δx}=\lim_{Δx \rightarrow 0}k=k$.

2. Для функции $y=x^3$ найти:
а) приращение функции при переходе от фиксированной точки $x$ к $x+ Δx$.

б)предел отношения приращения функции к приращению аргумента при условии, что приращение аргумента стремится к нулю.

Решение:

а) $f(x)= x^3$.
$f(x+ Δx)=(x+Δx)^3=x^3+3x^2Δx+3xΔx^2+Δx^3$.
$Δy= f(x+Δx)-f(x)= x^3+3x^2Δx+3xΔx^2+Δx^3-x^3=3x^2Δx+3xΔx^2+Δx^3$.

б) Найдем требуемый предел: $\lim_{Δx \rightarrow 0}\frac{Δy}{Δx}=\lim_{Δx \rightarrow 0}\frac{3x^2Δx+3xΔx^2+Δx^3}{Δx}=\lim_{Δx \rightarrow 0}(3x^2+3xΔx+Δx^2)=3x^2$.


Задачи для самостоятельного решения:


1) Найти приращение функции $y=x^4$ при переходе от $x_0=3$ к точке:
а) $x=3,2$;
б) $x=2,8$.

2) Для функции $y=3x+5$ найти приращение функции при переходе от фиксированной точки $x$ к $x+ Δx$.

3) Для функции $y=x^2$ найти приращение функции при переходе от фиксированной точки $x$ к $x+ Δx$.

4) Для функции $y=2x^3$ найти приращение функции при переходе от фиксированной точки $x$ к $x+ Δx$.